Influence of Pressure-Driven Gas Permeation on the Quasi-Steady Burning of Porous Energetic Materials

نویسنده

  • STEPHEN B. MARGOLIS
چکیده

A theoretical two-phase-flow analysis is developed to describe the quasi-steady propagation, across a pressure jump, of a multi-phase deflagration in confined porous energetic materials. The difference, or overpressure, between the upstream (unburned) and downstream (burned) gas pressure leads to a more complex structure than that which is obtained for an unconfined deflagration in which the pressure across the multi-phase flame region is approximately constant. In particular, the structure of such a wave is shown by asymptotic methods to consist of a thin boundary layer characterized by gas permeation into the unburned solid, followed by a liquid/gas flame region, common to both types of problems, in which the melted material is preheated further and ultimately converted to gaseous products. The effect of gas flow relative to the condensed material is shown to be significant, both in the porous unburned solid as well as in the exothermic liquid/gas melt layer, and is, in turn, strongly affected by the overpressure. Indeed, all quantities of interest, including the burned temperature, gas velocity and the propagation speed, depend on this pressure difference, leading to a significant enhancement of the burning rate with increasing overpressure. In the limit that the overpressure becomes small, the pressure gradient is insufficient to drive gas produced in the reaction zone in the upstream direction, and all gas flow relative to the condensed material is directed in the downstream direction, as in the case of an unconfined deflagration. The present analysis is particularly applicable to those types of porous energetic solids, such as degraded nitramine propellants, that can experience significant gas flow in the solid preheat region and which are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow

Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Dar...

متن کامل

A New Resistance Model for Interpretation of Gas Permeation Data of Composite and Asymmetric Membranes

In this work a new resistance model has been presented based on that of Henis-Tripodi which can be used for interpretation of gas permeation data in composite and asymmetric membranes. In contrast to the previous works, in this model the fraction of the support layer surface that includes the pores filled with coating material has been taken into account. The influences of the filled pores on s...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

Synthesis, Characterization and Vapor Permeation Performance of B-ZSM-5 Membranes

In the present work, B-ZSM-5 zeolite membranes were synthesized on porous tubular α-alumina supports by several subsequence in situ crystallization hydrothermal treatments. The TiO2- Bohmite and ɣ- alumina intermediate layers were applied to improve the lattice matching between zeolite layer and the support. The uniform membrane intermediate layers with low permeation resistance were...

متن کامل

Molecular simulations of supercritical fluid permeation through disordered microporous carbons.

Fluid transport through microporous carbon-based materials is inherent in numerous applications, ranging from gas separation by carbon molecular sieves to natural gas production from coal seams and gas shales. The present study investigates the steady-state permeation of supercritical methane in response to a constant cross-membrane pressure drop. We performed dual control volume grand canonica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008